113 research outputs found

    Optical Conductivity of the t-J model within Cluster Dynamical Mean Field Theory

    Full text link
    We study the evolution of the optical conductivity in the t-J model with temperature and doping using the Extended Dynamical Cluster Approximation. The cluster approach results in an optical mass which is doping independent near half filling. The transition to the superconducting state in the overdoped regime is characterized by a decrease in the hole kinetic energy, in contrast to the underdoped side where kinetic energy of holes increases upon superfluid condensation. In both regimes, the optical conductivity displays anomalous transfers of spectral weight over a broad frequency region.Comment: 4 pages, 3 figure

    Complex Landau Ginzburg Theory of the Hidden Order in URu_2Si_2

    Full text link
    We develop a Landau Ginzburg theory of the hidden order phase and the local moment antiferromagnetic phase of URu_2Si_2. We unify the two broken symmetries in a common complex order parameter and derive many experimentally relevant consequences such as the topology of the phase diagram in magnetic field and pressure. The theory accounts for the appearance of a moment under application of stress and the thermal expansion anomaly across the phase transitions. It identifies the low energy mode which is seen in the hidden order phase near the conmensurate wavector (0,0, 1) as the pseudo-Goldstone mode of the approximate U(1) symmetry.Comment: 4 pages, 3 figure

    Quantum Monte Carlo Impurity Solver for Cluster DMFT and Electronic Structure Calculations in Adjustable Base

    Full text link
    We generalized the recently introduced new impurity solver based on the diagrammatic expansion around the atomic limit and Quantum Monte Carlo summation of the diagrams. We present generalization to the cluster of impurities, which is at the heart of the cluster Dynamical Mean-Field methods, and to realistic multiplet structure of a correlated atom, which will allow a high precision study of actinide and lanthanide based compounds with the combination of the Dynamical Mean-Field theory and band structure methods. The approach is applied to both, the two dimensional Hubbard and t-J model within Cellular Dynamical Mean Field method. The efficient implementation of the new algorithm, which we describe in detail, allows us to study coherence of the system at low temperature from the underdoped to overdoped regime. We show that the point of maximal superconducting transition temperature coincides with the point of maximum scattering rate although this optimal doped point appears at different electron densities in the two models. The power of the method is further demonstrated on the example of the Kondo volume collapse transition in Cerium. The valence histogram of the DMFT solution is presented showing the importance of the multiplet splitting of the atomic states.Comment: 12 pages, 4 figure

    Mott Transition and Magnetism in Rare Earth Nickelates and its Fingerprint on the X-ray Scattering

    Full text link
    The metal-insulator transition (MIT) remains among the most thoroughly studied phenomena in solid state physics, but the complexity of the phenomena, which usually involves cooperation of many degrees of freedom including orbitals, fluctuating local moments, magnetism, and the crystal structure, have resisted predictive ab-initio treatment. Here we develop ab-initio theoretical method for correlated electron materials, based on Dynamical Mean Field Theory, which can predict the change of the crystal structure across the MIT at finite temperature. This allows us to study the coupling between electronic, magnetic and orbital degrees of freedom with the crystal structure across the MIT in rare-earth nickelates. We predict the free energy profile of the competing states, and the theoretical magnetic ground state configuration, which is in agreement with neutron scattering data, but is different from the magnetic models proposed before. The resonant elastic X-ray response at the K-edge, which was argued to be a direct probe of the charge order, is theoretically modelled within the Dynamical Mean Field Theory, including the core-hole interaction. We show that the line-shape of the measured resonant elastic X-ray response can be explained with the "site-selective" Mott scenario without real charge order on Ni sites.Comment: Acknowledgments updated, citations adde
    • …
    corecore